Quintic non-polynomial spline for time-fractional nonlinear Schrödinger equation
نویسندگان
چکیده
منابع مشابه
NUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE
This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...
متن کاملDrag force in bimodal cubic-quintic nonlinear Schrödinger equation.
We consider a system of two cubic-quintic nonlinear Schrödinger equations in two dimensions, coupled by repulsive cubic terms. We analyze situations in which a probe lump of one of the modes is surrounded by a fluid of the other one and analyze their interaction. We find a realization of D'Alembert's paradox for small velocities and nontrivial drag forces for larger ones. We present numerical a...
متن کاملNON-POLYNOMIAL SPLINE SOLUTIONS FOR SPECIAL NONLINEAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS
We present a sixth-order non-polynomial spline method for the solutions of two-point nonlinear boundary value problem u(4)+f(x,u)=0, u(a)=α1, u''(a)= α2, u(b)= β1,u''(b)= β2, in off step points. Numerical method of sixth-order with end conditions of the order 6 is derived. The convergence analysis of the method has been discussed. Numerical examples are presented to illustrate the applications ...
متن کاملComputational Non-Polynomial Spline Function for Solving Fractional Bagely-Torvik Equation
In this paper, the Bagley-Torvik equation is constructed. A model approach based on non-polynomial numerical methods spline interpolation is developed to solve some problems. We show that the approximate solutions of such problems obtained by the numerical algorithm developed using non-polynomial spline interpolation functions are better than those produced by other numerical methods. The aim o...
متن کاملFractional Schrödinger equation.
Some properties of the fractional Schrödinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schrödinger equation we find the energy spectra of a hydrogenlike atom (fractional "Bohr atom") and of a fractional oscillator in the semiclassical a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2020
ISSN: 1687-1847
DOI: 10.1186/s13662-020-03021-0